翻訳と辞書
Words near each other
・ Wickenden Street
・ Wickenrodt
・ Wickens
・ Wickepin, Western Australia
・ Wicker
・ Wicker (disambiguation)
・ Wicker (Sheffield)
・ Wicker ancylid
・ Wicker Arches
・ Wicker man
・ Wicker Park
・ Wicker Park (Chicago park)
・ Wicker Park (film)
・ Wicker Park (soundtrack)
・ Wicker Park District
Wick's theorem
・ Wick, Bournemouth
・ Wick, Caithness
・ Wick, Devizes
・ Wick, Gloucestershire
・ Wick, Vale of Glamorgan
・ Wick, West Sussex
・ Wick, West Virginia
・ Wick, Worcestershire
・ Wick-A-Te-Wah, Michigan
・ Wickaboag Valley Historic District
・ Wickahoney Post Office and Stage Station
・ Wickahoney, Idaho
・ Wickaman
・ Wickaninnish


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wick's theorem : ウィキペディア英語版
Wick's theorem

Wick's theorem is a method of reducing high-order derivatives to a combinatorics problem.〔Philips, 2001〕 It is named after Gian-Carlo Wick. It is used extensively in quantum field theory to reduce arbitrary products of creation and annihilation operators to sums of products of pairs of these operators. This allows for the use of Green's function methods, and consequently the use of Feynman diagrams in the field under study. A more general idea in probability theory is Isserlis’ theorem.
==Definition of contraction==
For two operators \hat and \hat we define their contraction to be
:\hat^\bullet\, \hat^\bullet \equiv \hat\,\hat\, - \mathopen \hat\,\hat \mathclose
where \mathopen \hat \mathclose denotes the normal order of an operator \hat.
Alternatively, contractions can be denoted by a line joining \hat and \hat.
We shall look in detail at four special cases where \hat and \hat are equal to creation and annihilation operators. For N particles we'll denote the creation operators by \hat_i^\dagger and the annihilation operators by \hat_i (i=1,2,3\ldots,N).
They satisfy the usual commutation relations ()=\delta_, where \delta_ denotes the Kronecker delta.
We then have
:\hat_i^\bullet \,\hat_j^\bullet = \hat_i \,\hat_j \,- \mathopen\,\hat_i\, \hat_j\,\mathclose\, = 0
:\hat_i^\, \hat_j^ = \hat_i^\dagger\, \hat_j^\dagger \,-\,\mathopen\hat_i^\dagger\,\hat_j^\dagger\,\mathclose\, = 0
:\hat_i^\, \hat_j^\bullet = \hat_i^\dagger\, \hat_j \,- \mathopen\,\hat_i^\dagger \,\hat_j\, \mathclose\,= 0
:\hat_i^\bullet \,\hat_j^= \hat_i\, \hat_j^\dagger \,- \mathopen\,\hat_i\,\hat_j^\dagger \,\mathclose\, = \delta_
where i,j = 1,\ldots,N.
These relationships hold true for bosonic operators or fermionic operators because of the way normal ordering is defined.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wick's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.